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 STABLE STRUCTURES ON MANIFOLDS: II

 STABLE MANIFOLDS

 BY MORTON BROWN AND HERMAN GLUCK*

 (Received September 21, 1962)

 (Revised April 8, 1963)

 1. Introduction

 The first paper [1] of this series studied the group of homeomorphisms

 of the n-sphere. The present paper is divided into four parts, as follows.

 In the first part we consider the group of homeomorphisms of a con-

 nected topological manifold. The results obtained are weakened generali-
 zations of the theorems proved in [1] for the n-sphere.

 The second part introduces stable structures. The results of the first

 part can be improved to full generalizations of the theorems in [1] if and
 only if the manifold supports a stable structure.

 The third part studies the relations between stable structures and

 covering spaces.

 The fourth part considers the questions of existence and uniqueness of

 stable structures.

 The machinery developed here will be applied in the following paper

 to some problems in the field of topological manifolds.

 (I)

 2. Definitions

 The reader is first referred to the definitions supplied in [1, ? 2].
 The set of points {(x1, * , xO) E x2 < 1} in euclidean n-space RI will

 be denoted by D" and its boundary by Sn-'. Dn and any space homeo-

 morphic to Dn will be called a closed n-cell. Sn' and any space homeo-
 morphic to Sn-1 will be called an n - 1 sphere.

 Ml will always denote a connected n-dimensional topological manifold,
 and H(M4) the group of homeomorphisms of Mn onto itself.

 A k-manifold Mk in an n-manifold Mn will be called locally flat if each
 point of Mk has a neighborhood U in Mn such that the pair (U, U n Mk)
 is topologically equivalent to the pair (Ran Rk). An embedding f: Mk Mn

 * The first named author gratefully acknowledges the support of the National Science
 Foundation and the Institute for Advanced Study. The second named author gratefully

 acknowledges the support of the National Academy of Sciences and the Air Force Office

 of Scientific Research.
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 STABLE STRUCTURES: II 19

 will be called locally flat if f(Mk) is locally flat in Ml. An embedding

 f: Di - Ml will be called locally flat if f /Sn-' is locally flat.
 Hom (D", Ml) will denote the set of all locally flat embeddings of Di

 into M-. If h e H(M-) and f e Hom (D', Ml)% then hf e Hom (D", Ml).
 Hence H(M7) acts as a transformation group on Hom (D7, Ma).

 3. Annular equivalence of embeddings of D in Ml'

 In a manner similar to that of [1], we will proceed by first studying

 Hom (D"I, Ml') and then using the information obtained to study H(M1).
 Let f0 and f, be elements of Hom (D,, Mn) such that f0(Dl) lies in the

 interior of fi(D1). If there is an embedding F: Sni x [0, 1] M7 such
 that, for all x e Sn-, F(x, 0) fg(X) and F(x, 1) = f1(x), then F will be
 called a strict annular equivalence between f0 and f, and we write both

 ffA A1 and f1A A f0

 Strict annular equivalence is not an equivalence relation, but induces

 one as follows. Two elements f and f ' of Hom (D , M7) will be called
 annularly equivalent, written

 fa af 9

 if there is a finite sequence of elements f = J, fA *, fk = f' of
 Hom (D,, M7) such that ficAfi1 for i = O 1, *.., k - 1. Annular
 equivalence is an equivalence relation.

 LEMMA 3.1. Let f be an element of Hom (D", Ml), and U an open set
 in M1. Then there is an elementf' of Hom (D", M") such that f'(Dn)c U
 ,and ffa. If U meets f(DI), then we can make fAf'.

 If U meets f (D"), then U also meets the interior of f (DI). Let g be a

 homeomorphism of DI onto f (D ) such that

 (i) g/Sn-1 = f/Sn-1
 (ii) g(O) e U.

 Then there is a t > 0 such that the image under g of the n-cell D, of
 radius t and center at the origin lies in U. If p denotes the radial contrac-
 tion of Dn onto Dt, then f gp is related to g, and hence to f, by a strict

 annular equivalence.

 If U misses f (D,), let u be a fixed point of U. According to [2], there

 is an embedding F: S-' x [0, 1] M' - Intf (D,) such that
 (i) F(x, 0) = f (x) for all x E Sn-1.

 If m is contained in F(S'-1 x (0, 1)), there is a homeomorphism h of
 M - Intf(D") onto itself which restricts to the identity on f (S-') and
 carries m onto u. Hence F may be chosen so that, in addition to (i), we

 have
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 20 BROWN AND GLUCK

 (ii) F(S -1 x (0, 1)) contains u.

 Let g be a homeomorphism of Dn onto f (D,) U F(S1-' x [0, 1]) such
 that

 (i) g(x) = F(x, 1) for all x e SI`

 (ii) g(O) = u.
 Then f' is obtained from g as in the first part of the proof, and

 f -A g -A f.,

 As in [1], we now inquire how much the relation of annular equivalence
 generalizes that of strict annular equivalence.

 LEMMA 3.2. Let f1'-f2 -f3 be elements of Hom (D,, M,) such that

 fi(D ) c Int fj(D") c fj(D ) c Intfk(Dn) for some permutation (i, j, k)
 of (1, 2, 3). Then fv Af3.

 This follows directly from [1, Lemma 3.2].

 LEMMA 3.3. Let fiAf2 Af3'Af4Af5, with fi(D ), f3(D ) and f5(D )
 mutually disjoint. Then there is a g e Hom (Dn, Mn) such that fi Ag'Afs.

 Picturing hs(Dn) as very small, there is a homeomorphism h of Mn such
 that

 h/f1(Dn) = 1 h/f3(Dn) = 1 hf2(D,) nf5(D) - 0 .

 Since hf2 Ahf3 = f3, there is a homeomorphism h' of Mn such that

 h'/f3(D6) = 1 h'/f5(Dn) = 1 h'hf2(Dn) c Intf4(Dn)

 simply by shrinking hf2(Dn) close enough to f3(Dn).
 Now let g = h''f4.

 Then g = h'-lf4 - h'-f5 - f5.

 Now h'hf2'Ah'hf3 - f3 cf4, and f3(D ) c Int h'hf2(D ) c h'hf2(D ) c
 Intf4(DI). So by Lemma 3.2, h'hf2 Af4.

 But then h'f1 - hhf1'Ah'hf2 Af4, and h'f1(Dn) c Int h'hf2(DI) c

 h'hf2(Dn) c Int f4(D). So again by Lemma 3.2, h'ff Af4.
 Hence f1 - h'-lf4= grAf5, as desired.

 THEOREM 3.4. Let f and f' be annularly equivalent elements of
 Hom (D,, M,) with disjoint images. Then there is a g e Hom (D,, M,)
 such that

 f -A g A f

 Let f = foA fi- A *fk = f'.
 First we may assume that for no j do we have either fj_1(Dn) c

 fj(Dn) cfj+?(Dn) or the reverse, for otherwise by Lemma 3.2 we could
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 STABLE STRUCTURES: II 21

 drop fj from the chain and write fj1, Afj+.1
 Second, we may assume thatfX(D") cf1(D"). For iff0(D") Df1(D"), we

 can slightly expand fg to g, such that fg - g0 ' f and f0(D ) c g,(D ) D
 f1(Dn), and then add go to the chain between go and f,.

 Similarly, we shall assume that fk-l(D") D fk(D ).
 Thus we may write

 fO(D ) c f1(D ) D f2(D ) C ... C fkl(D") :D fk(D).

 For each j = 0, 1, ** * , k/2, let U2j be a small open set in Int f2j(DI),
 chosen so that U2i n U2j = 0 for i # j. For each such j, use Lemma 3.1

 to obtain an element f2*j e Hom (D", M") such that f2*(D") c U2j and
 f2j A f2i

 Then by Lemma 3.2,

 fJ -10 AIJ AIJ2f A Af k-1 A f k = fv

 Repeated use of Lemma 3.3 proves the existence of a g* e Hom (D", M")
 such that

 f f*g A * fA k* = fX*

 Since f * Af, f * -ft and f and f' have disjoint images, there is a
 homeomorphism h of Ml such that

 hf* =f and hf* =If .

 Then let g = hg*, and the theorem is proved.
 If Mn = S , the above theorem is a weakened version of [1, Theorem

 3.5].

 4. Stable homeomorphisms

 Let h be a homeomorphism of Ml onto itself. If there is a non-empty

 open set U c M" such that hi U = 1, we will say that h is somewhere the

 identity. If there is a closed n-cell E with locally flat boundary in Ml
 such that h/Mn - E = 1, we will say that h is almost everywhere the
 identity.

 SH(M"), the group of stable homeomorphisms of M", will consist of
 products of homeomorphisms, each of which is somewhere the identity.

 SHO(M7) will consist of products of homeomorphisms, each of which is
 almost everywhere the identity.

 It is shown in [3] that SHO(M7) is the intersection of all non-trivial

 normal subgroups of H(M7), and is, furthermore, simple. In particular,

 SHo(M") must be arewise connected in the compact-open topology. Hence
 every homeomorphism in SHO(M") is isotopic to the identity through
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 22 BROWN AND GLUCK

 homeomorphisms in SHo(M").

 A set of homeomorphisms of the space X onto itself is called complete

 if every homeomorphism of X which agrees with some homeomorphism.

 in the set in a neighborhood of each point of X is itself in the set. If

 g e H(M1) agrees with h e SH(Ml) on the non-empty open set U, then
 h-1g/ U = 1. Then h-1g e SH(M1). Hence g e SH(M1). Thus SII(Ma) is

 certainly complete.

 5. Stable equivalence of embeddings of D" in M"

 Let f, and f2 be elements of Hom (D", Mn). If there is a stable homeo-
 morphism h e SH(Mn) such that hf1 = f2, then we say that f1 and f2 are
 stably equivalent, and write

 f 8 f2.

 Stable equivalence is an equivalence relation, so Hom (Dn, Mn) divides
 up into stable equivalence classes. The set of these stable equivalence

 classes will be denoted by

 Hom (D, Ms)

 Let f1, f2, and choose h e SH(Mn) so that hf1 = f2. If g e H(Mn),
 then ghg-1 e SH(Mn) because SH(M`) is normal in H(Mn). Hence

 (ghg-')gf1 = gf2, so gf1 - gf2. Thus H(Mn) acts on Hom (Dn, Mn) by
 permuting the stable equivalence classes, and therefore induces an action

 of H(Mn) on Hom8 (Dx, Mn).

 LEMMA 5.1. Let f1 and f2 be stably equivalent elements of Hom(D", M")

 and g a homeomorphism of Ml such that gf1 = f2. Then g E SH(Mn).
 For if h is a stable homeomorphism such that hf1 = f2, then h and g'

 agree on the non-empty open set Intf1(Dn). Hence g must also be stable.

 COROLLARY 1. If an element of H(M") leaves one stable equivalence
 class of Hom (Dn, Mn) fixed, it is an element of SH(Mn), and therefore
 leaves all stable equivalence classes fixed.

 COROLLARY 2. H(Mn)/SH(Mn) acts as a regular permutation group
 on Homrn (Dn, Mn), and is therefore in one-one correspondence with a,
 subset of Homrn (Dn, Mn).

 Notice that we do not assert that this action is transitive. Hence if

 Mn = Sn, the above Corollary is a weakened version of [1, Corollary 2 to
 Lemma 5.1].

 THEOREM 5.2. Let f and f' be elements of Hom (Dn, MB) such that
 f A f'. Then there is a stable homeomorphism h of Mn such that f =
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 STABLE STRUCTURES: II 23

 hf '. Furthermore, h may be selected from SHo(M").

 Assume that f (D") C Int f '(D"), and let F: S"-1 x [0, 1] Mn be a
 strict annular equivalence between f and f '. According to [2], F may be
 extended to a locally flat embedding F*: Su` x [0, 2] M . Let D*
 denote the closed n-cell in Mn with boundary F*(Sn-l x 2) which contains

 f (Dn) and f '(Dn).
 A homeomorphism h e SHo(Mn) may then be constructed so that

 (i) hf'(x)=f(x) for all xe Dn

 (ii) hF*(x, t) = F*(x, 2t - 2) for all xc Sn- and all t e [1, 2]
 (iii) h/Mn -D* = 1.

 Then h is well-defined because, for all x E Sn-1,

 hf '(x) = hF*(x, 1) = F*(x, 0) =f (x)

 and

 hF*(x, 2) = F*(x, 2) .

 COROLLARY. If f af ', then there is an h e SH,(Mn) such that f= hf'.
 Hence in particular, f f'.

 THEOREM 5.3. Let h be a stable homeomorphism of MB whose restric-

 tion to the non-empty open set U is the identity. Iff E Hom (Dn, Mn),
 then f - hf.

 According to Lemma 3.1, there is an element f ' of Hom (D , Mn) such
 that f '(Dn) c U and f' a f. Then clearly hf' - hf. Therefore

 -hf'-hf, f af'= f ahf

 hence

 fahf .

 COROLLARY. If f -f, then f af.
 Choose a stable homeomorphism h of Mn such that f' = hf. Write h

 as a product hkhk-l ... h^h, of homeomorphisms, each of which is some-
 where the identity. Then by Theorem 5.3,

 fahlf-h2h1fa ... -* hkhk-1 * * * h2h1f = hf =ff ,
 hence

 f -a f

 Combining the Corollaries to Theorems 5.2 and 5.3, we get

 THEOREM 5.4. Two elements of Hom (Dn, Mn) are stably equivalent if
 and only if they are annularly equivalent.

 Note that we also obtain
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 24 BROWN AND GLUCK

 THEOREM 5.5. Let f and f' be stably equivalent elements of

 Hom (Dn, Mn). Then there is a homeomorphism h e SHo(Mn) such that
 f = f'.

 For if f and f' are stably equivalent, they are also annularly equiva-

 lent, and then such an h exists by the Corollary to Theorem 5.2.
 We will generally prefer the name stable equivalence to annular

 equivalence, except when specifically referring to the results of ? 3 and

 the present section.

 6. The structure of Hom, (Dn, M") and SH(Mn)

 Let U be a non-empty connected open subset of M", and consider
 Hom (Dn, U). If i: U c Mn is the inclusion, then the association of

 f e Hom (Dn, U) with i .f e Hom (Dn, Mn) defines a map from Hom (Dn, U)
 to Hom (Dn, Mn). Since annular equivalence in U implies annular equiva-

 lence in Mn, we also get a map

 i*: Homrn (Dn, U) Hom-b (Dn, Mn).

 This map is onto by Lemma 3.1, but is not in general one-one (suppose

 for example that Mn is non-orientable and U orientable).
 If Mn = Sn, then it follows easily from [1, Theorem 3.5 (i)] that iz, is

 always one-one. Theorem 3.4 of the present paper is only a weakened
 generalization of this theorem, hence even for orientable Mn, we can not

 conclude that iz, is always one-one.
 The following result, although not the best possible, will be sufficient

 for present purposes.

 THEOREM 6.1. Let E be a closed n-cell with locally flat boundary in

 M . Then i,: Hom, (D , Mn - E)-> Hom8 (Dx, Mn) is one-one.
 Let f, f' e Hom (Dn, Mn - E) be annularly equivalent in Mn. Using

 Lemma 3.1, we can assume that f and f ' have disjoint images. Then by

 Theorem 3.4 there is an element g e Hom (Dn, Mn) such that

 f A g Af'

 Picturing E as very small, there is a homeomorphism h of M" such
 that

 h/f (Dn) = 1 h/ f'(D A) - 1 hg(Dn) C Mn - E.

 Then f = hfrAhgA hf 'f ' in Mn - E, so fa f' in Mn - E.

 COROLLARY. Let A be a closed subset of MN which does not disconnect
 Ml and which is contained in a closed n-cell E with locally flat boundary
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 in Mn. Then i,: Hom, (Dn, Mn - A) - Homr (Dn, Mn) is one-one.
 Let j: (Mn -E) c (M -A) and k: (M -E) c Mn. Then

 k* = i* j* .

 Then k* is one-one by Theorem 6.1 and, since Mn - A is connected, j* is
 onto by Lemma 3.1. Hence i* must be one-one.

 THEOREM 6.2. Let h be a stable homeomorphism of MN and E1, E2

 closed n-cells with locally flat boundaries in Mn. If E1 U hEl is disjoint
 from E2, then there is a stable homeomorphism h' of Mn which agrees

 with h on E1 and whose restriction to E2 is the identity.

 Let f be a homeomorphism of Dn onto E1. Then f and hf are stably

 equivalent elements of Hom (D", Ms). By Theorem 6.1, f and hf must
 also be stably equivalent in Ml - E2. By Theorem 5.5, there is a homeo-

 morphism h. e SHO(M" - E2) such that hof = hf. Since h. must have
 compact support, h. can be extended over E2 by the identity to yield h'.

 COROLLARY. Any stable homeomorphism of MN can be written as the

 product of two homeomorphisms, each of which is somewhere the identity.

 Theorem 6.2 seems to be a word-for-word generalization of [1, Theo-

 rem 7.1], which was the principal structure theorem for stable homeo-
 morphisms of Sn. Note however that in the case of Sn, the theorem can

 be reworded so that E2, instead of being disjoint from E1 U hE1, contains
 E1 U hE1 in its interior. In the case of an arbitrary connected manifold

 Mn, the reworded theorem is no longer equivalent to the original one.

 Note that in the following theorem, we are not free to choose E2.

 THEOREM 6.3. Let h be a stable homeomorphism of Mn and E1 a closed

 A-cell with locally flat boundary in Mn such that E1 and hE1 are disjoint.
 Then there exists a closed n-cell E2 with locally flat boundary in Ma

 which contains E1 U hE1 in its interior, and a stable homeomorphism h'
 of Ma which agrees with h on E1 and whose restriction to Ma - E2 is
 the identity.

 Let f be a homeomorphism of Dn onto E1. Then f and hf are annularly

 equivalent elements of Hom (Dn, MN) by Theorem 5.4. Since they have
 disjoint images, Theorem 3.4 asserts the existence of an element
 g e Hom (Dn, Mn) such that f AgAhf. Let E2 = g(Dn).

 Let F: Sn1 x [0, 1] - Mn be a strict annular equivalence between f
 and g, and F*: Sn1 x [0, 1] Mn a strict annular equivalence between
 hf and g.

 A homeomorphism h' may then be constructed so that
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 26 BROWN AND GLUCK

 ( i ) h'f(x) = hf(x) for all x e Dn,
 (ii) h'F(x, t) = F*(x, t) for all x e Sn1 and all t e [0, 1],

 (iii) h'/Mn - E2 = 1.
 It is easily seen that h' is well-defined, and the theorem is proved.

 THEOREM 6.4. SH(M') is the completion of SHo(Mn), and may there-
 fore be characterized as the smallest non-trivial complete normal sub-

 group of H(Mn).

 Let h be a stable homeomorphism of Mn and m a point of Mn. Let
 f e Hom (D", Mn) be chosen so that f(O) = m. Since f and hf are stably

 equivalent, there is, by Theorem 5.5, a homeomorphism hb e SHo(Mn)

 such that hof = hf. Then h and ho agree on a neighborhood of m, so
 SH(Mn) is contained in the completion of SHO(Mn). Since SH(Mn) is.
 already complete, it is the completion of SHo(Mn).

 The characterization of SH(Mn) then follows from the fact that

 SHo(Mn) is the smallest non-trivial normal subgroup of H(Mn).

 THEOREM 6.5. Let U be a connected open subset of MB, and h a homeo-

 morphism of Mn which takes U onto itself. If hi U is stable, then so is
 h stable.

 Letf f Hom (D-, U). Then f - hf in U. By Theorem 5.4, f - hf in U.
 Then certainly f - hf in Mn. Again by Theorem 5.4, f - hf in Mn. By
 Lemma 5.1, h must be stable.

 (II)

 7. The pseudogroup of stable coordinate transformations

 Let fi be a homeomorphism of the open set U. c R" onto the open set
 Ve( c Rn for i = 1, 2. If v1 n U2 is not empty, define the composition f2f1
 to be the map

 (f2/vl nU2) (f1Ifc1(v1 n U2)) f1( v1l n u2) f2( v1 l U2) .

 If v1 n U2 is empty, the composition f2f1 will not be defined.
 Let P be a collection of homeomorphisms of open sets in RF, onto open

 sets in Rn. P will be called a pseudogroup provided

 ( i ) the identity map of Rn is in P,
 (ii) if f, g e P, then fg e P whenever defined,

 (iii) if f e P, then f-1 e P,
 (iv) iff: U-p Vis in Pand U'c U, thenf/U' is in P,
 (v) if f: U - V is a homeomorphism, and for each x e U there is a

 neighborhood Ux of x such that f/ Ux is in P, then f is in P. (This is the
 completeness condition.)
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 A homeomorphism f: U - V is stable at x e U if there is a neighborhood

 Ux of x and a stable homeomorphism h of Rn onto itself such that

 f/Ux h/Uxe

 Then f is stable if it is stable at each point of U. Note that by definition,

 the set of points of U at which f is stable is open.

 Suppose now that f: U - V is not stable at x e U. Let E be a closed
 n-cell with locally flat boundary, which contains x in its interior and

 which is itself contained in U. According to [2] and [4], f IE can be ex-
 tended to a homeomorphism h of Rn onto itself. Now if f were stable at

 any point of the interior of E, then h would agree with a stable homeo-
 morphism on some open set and would therefore itself be stable. But
 then f would be stable at x. Hence f cannot be stable at any point of

 the interior of E, so the set of points of U at which f is not stable is also

 open.

 We have therefore proved

 THEOREM 7.1. If f: U-p V is stable at x e U, then it is stable on the
 component of U containing x. Similarly, if f is not stable at x e U, it
 is not stable at any point of the component of U containing x.

 A homeomorphism f: U p V which is stable on U will be called a
 stable coordinate transformation. The collection of all stable coordinate

 transformations forms a pseudogroup, which we denote by SP(Rn).

 If f: U - V and h is a homeomorphism of Rn, then hf h-1: h U ) h V.
 A pseudogroup P is called normal if f e P implies hf h-1 e P for every

 homeomorphism h of Rn. P is called simple if every pseudogroup con-

 tained in P which is invariant under conjugation by those homeo-
 morphisms of Rn lying in P is either the trivial pseudogroup or else all
 of P.

 THEOREM 7.2. SP(Rn) is the intersection of all non-trivial normal
 pseudogroups in Rn and is, furthermore, simple.

 The theorem will be proved by showing that any normal pseudogroup

 other than the trivial one must contain a homeomorphism, other than

 the identity, whose domain and range is all of Rn. Then since SH,(R") is
 the smallest non-trivial normal subgroup of H(R"), any non-trivial normal
 pseudogroup will have to contain SHo(R"). Then by completeness it will
 also contain SH(R"). Finally by restriction it must contain SP(Rn).

 Since all conjugations will be by stable homeomorphisms, we will at the
 same time have demonstrated the simplicity of SP(Rn).

 Suppose then that P is a non-trivial normal pseudogroup. We must

This content downloaded from 81.140.33.209 on Thu, 29 Mar 2018 16:58:03 UTC
All use subject to http://about.jstor.org/terms



 28 BROWN AND GLUCK

 show that P contains a homeomorphism of Rn onto itself. Start with an

 element f: U - V of P other than the identity. By restriction, if neces-
 sary, we can assume that U and V are disjoint. Let x e U and let U0 be

 a small n-cell neighborhood of x whose closure lies in U. Then VT = f( U0)
 is a small n-cell neighborhood of f(x) whose closure lies in V.

 Now let g be a homeomorphism of Rn onto itself which restricts to the

 identity outside U0 U V0 such that

 gf(x) # fg(x).

 Note that g is stable. Since P is normal, P must also contain gfg-1: U-- V,
 and hence also f-1gfg-1: U - U. Note that

 f-lgfg-l(g(x)) = f-1gf(x) # f-lfg(x) = g(x).

 Hence f-1gf1g- is not the identity. On the other hand, f-1gf1g- restricts
 to the identity on U - U0. Let h be the homeomorphism of Rn onto itself

 which agrees with f-1gfg-1 on U and the identity on Rn - U0. Then h
 must lie in P by completeness, and the theorem is proved.

 8. The sheaf of germs of stable structures

 Let Mn be a connected topological n-manifold, and h a homeomorphism

 from an open set in Rn onto an open set U c Mn. We call h a coordinate

 homeomorphism, U a coordinate neighborhood, and the pair (U, h) a

 local coordinate system. If x e U, the triple (x, U, h) will be called a
 local coordinate system at x.

 Two triples (x, U, h) and (x', U', h') will be said to be stably equivalent if

 (i) x = x'
 (ii) h'-1h: h-1( u n u) , h'-1( u n U') is stable at h-1(x).

 In such a situation we will also say that the local coordinate systems

 (U, h) and (U', h') are stably equivalent at x.
 The stable equivalence class determined by a triple (x, U, h) will be

 denoted by [x, U, h]. The set of all such stable equivalence classes will
 be denoted by S = S(Mn), and called the sheaf of germs of stable struc-
 tures on Mn. A map

 P: S(Mn) ,Mn

 is defined by sending [x, U, h] onto x. Then p-1(x) = S(x) is called the
 stalk over x.

 If (U, h) is a local coordinate system, then with each x e U we may

 associate the element [x, U, h] of S(x), thus obtaining a section

 h: U- S
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 of the sheaf over U.

 As is customary, S is topologized with the maximal topology making
 all such sections continuous. In this topology, a set in S is open if and
 only if its inverse image under every h is open in Mn.

 A map f: S - X is continuous if and only if f h: U > X is continuous
 for all local coordinate systems (U, h). Then p: So M" is certainly con-
 tinuous.

 THEOREM 8.1. Let (U, h) be a local coordinate system in MN. Thenr
 the section h: U p S is an open map.

 It is clearly sufficient to show that h( U) is open in S. For if U' is open
 in U, then h( U') = (h/h- U')( U').

 To show that h( U) is open in S, we must show that (U)-1h( U) is open
 in Ml for any local coordinate system (V, g). Now x e (U)-1h( U) if and
 only if x e U n v and (U, h) is stably equivalent to (V, g) at x. But if
 (U, h) and (V, g) are stably equivalent at x, they are stably equivalent
 in a neighborhood of x, hence (U)-1h( U) is open in Ml', and therefore h( U)
 is open in S.

 9. Construction of S'

 In this section we will construct over Ml a principal bundle S' with
 group and fibre the discrete group H(Rn)/SH(Rn). The most important
 property of S will then be displayed in the next section by showing that
 S and S' are equivalent over Mn.

 Let (Uj, hi), be a family of local coordinate systems on M" such that
 U, Ui = Mn. We will define, according to [5], a system of coordinate
 transformations in Ml with values in H(R")/SH(R"). If h e H(R"), it
 will be convenient to denote the coset h * SH(R"), which is an element of

 H(Rn)/SH(R%), by [h].
 If x e Ui n Uj, let h be a homeomorphism of RI which agrees with

 hj-hi in a neighborhood of h-'(x). Then [h] depends only on (Ut, hi), (Uj, hj)
 and x. The map

 9ji: ui n uj >(41S(4
 is then defined by

 gji(x) = [h] .

 The map gji is constant on components of Uj f U, and hence continuous.
 Furthermore,

 gkj(X) gji(x) = gki(X) for xE Ui n uj n Uk,

 by the normality of SH(RI) in H(R ).
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 Theorem 3.2 of [5] then asserts the existence and uniqueness (up to
 bundle equivalence) of a principal bundle S' over Ml with group and
 fibre H(RI)/SH(R1) and coordinate transformations gji.

 A model for S' is constructed as follows. Let T c Ml x
 (H(R')ISH(R')) x I be the set of triples (x, [hi], i) such that x e Ui, where
 both H(Rn)/SH(Rn) and I have the discrete topology. Then T is the
 union of the disjoint open subsets Ui x (H(Rt)/SH(Rn)) x i.

 Two triples (x, [h], i) and (x', [h'], j) will be said to be equivalent if
 (i) x = x',
 (ii) gji(x) [h] = [h'].

 The equivalence class of (x, [h], i) will be written [x, [h], i], and the set
 of such equivalence classes, with the decomposition topology, will be
 denoted by S'. A map

 pI: SI M-

 is defined by

 p'([x, [h], i]) = x.

 10. Equivalence of S and S'

 We first define a map

 mF: T*S

 by

 iF((x, [h], i)) = [x, Ui, hih] .

 If [h] = [h'], then (hih')-N(hih) - h'-h is certainly stable at (hih)-1(x).
 Hence [x, Ui, hih] = [x, Ui, hih'], and (L is well-defined.

 If (x, [h], i) and (x, [h'], j) are equivalent in T, then

 [h'] -gji(x) -[h] .

 Then 'J((x, [h'], i)) = [x, Uj, hjh']. In a neighborhood of (hih)-'(x),

 (hjh')-'(hih) = h-1hThi h1-hih = 1

 hence [x, Uj, hjh'] = [x, Ui, hih] = 'J((x, [h], i)).
 Therefore 1 induces a map

 9: S' S.

 THEOREM 10.1. q: S' S is a homeomorphism such that pp = p'.

 p9p([x, [h], ij) = p([x, Ui, hih]) = x = p'([x, [h], i]) .

 To show that p is a homeomorphism, we will show that
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 (i ) iF identifies two elements of T only if they are equivalent in T,
 (ii) iF is onto,
 (iii) iF is continuous,

 (iv) iF is open.

 PROOF OF (i). If ID((x, [h], i)) = .1((x', [h'], i)), then x=x' and (hjh')-N(hih)
 is stable at (hih)-I(x). Then [h'] -gji(x). [h], so (x, [h], i) is equivalent to

 (x', [h'], j) in T.
 PROOF OF (ii). Let [x, U, h] e S. Choose i e I so that x e U.. Let

 h' e H(R ) agree with high in a neighborhood of h-1(x). Then [x, U, h] =
 [x, Ui, hieh] = '1((x, [h'], i)).

 PROOF OF (iii). For fixed i e Iand h e H(R4), 'I((x, [h], i)) = [x, Ui, hih]
 varies continuously with x by the very choice of topology for S. Since I
 and H(RI)/SH(Rn) have discrete topologies, iF must be continuous.

 PROOF OF (iv). Let U be open in Ui, and i E I and h e H(R1) fixed.
 Then ID(U x [h] x i) = (hih)(U) is open in S by Theorem 8.1. Since I
 and H(RI)/SH(RI) have discrete topologies, iF must be open, and the
 proof is completed.

 Thus the sheaf S (Mn) of germs of stable structures on Ml is a principal

 bundle with group and fibre the discrete group H(R')/SH(Rn). Such an

 object differs from a regular covering space over Ml only in that S(Mn)
 is not necessarily connected. However, as a principal bundle, the various
 components of S(Mn) are equivalent over M", and in this generalized
 sense we state

 THEOREM 10.2. The sheaf S(M1) of germs of stable structures on Ml
 is a regular covering space over Ml.

 The well-defined normal subgroup of 71r(M") corresponding to this regu-
 lar covering will be called the stability subgroup of 71r(Mn), and denoted

 by Sw1r(Mn).

 Iff: M" -S(M") is a global section of S(M"), we call f a stable struc-
 ture on M4, say that Ml admits or supports a stable structure, and call
 Ml a stable manifold. In such a case, S(Mn) would be homeomorphic to

 Mn x H(R 1)1SH(R?1).
 Note that if U is open in Ml', p-1(U) is a copy of the sheaf of germs

 of stable structures on U. Hence every open subset of a stable manifold
 is stable.

 Since S(M") is a covering space over M", we have

 THEOREM 10.3. Every simply connected manifold admits a stable
 structure.
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 It is clear that Ml admits a stable structure if and only if there exists

 a family (Ui, hi), of local coordinate systems such that Ml = U, Ui and
 h-'hi is stable on h-'(ui nU U) for all i, j e L Such a family will be called
 a stable coordinate system on Ml.

 Note that stable coordinate transformations are always orientation

 preserving. Hence a stable manifold must be orientable.

 From [1, Ths. 11.1 and 11.2] we now have

 THEOREM 10.4. Every orientable differentiable or piecewise linear

 manifold admits a stable structure.

 1 1. Stable coordinate systems

 THEOREM 11.1. Let Mt be a connected topological manifold, (fs)A ca

 collection of elements of Hom (D,, M,) and (Uj), a collection of open n-
 cells covering Ml such that

 (i) if fw(DI) U f(DI) c U , then fb rfo in UiJ,
 (ii) if V is a component of ui n Uj, then there is an a C A such that

 f.(D") c V.
 Then Ma supports a stable structure.

 Let P be the set of pairs (a, i) such that fj(D1) c Uj. According to [2]
 and [4], there is a homeomorphism ho: RI' - Uj such that h0s/D" = fib.
 Then the family (Ui, h0), is a family of local coordinate systems covering
 Ml. We claim it is a stable coordinate system on Mn.

 We must show that ho 1h0b is stable on ho'( Ui n Uj) for any two elements
 (a, i) and (fi, j) of P. By Theorem 7.1, it will be sufficient to show that
 ho1hh is stable at at least one point from each component of h;'( Ui n uj).

 If W is a component of ho'( Ui n Uj), then V = h0(, W) is a component
 of Ui n Uj. According to (ii) above, there is a -i e A such that fy(D") c V.
 By (i), f'f in Uj and fi -fy in Uj. We will show that ho'h0S is stable at
 h;lfy(0).

 Since fb -fy in Uj, there is a stable homeomorphism pi of Uj onto
 itself such that pif,. = f, Then *j = h;'9pih0s is a stable homeomorphism
 of RI onto itself.

 Similarly, there is a stable homeomorphism qj of Uj onto itself such
 that qjff = fy, and hence /j = h-'9jh, is a stable homeomorphism of RI'
 onto itself.

 Finally, in a neighborhood of h;'fr(0), we have

 highs = (h'lfy)(f-'hw) = (h-l'jhg)(h-;'-'h,) = *j*-1
 which is stable.

 Thus (Ui, h0b), is a stable coordinate system on Ml.
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 A collection (ff0)A of elements of Hom (Dn, M") will be said to be stably
 dense in Mn provided

 (i) if f0v(Dn) and f,(Dn) both lie in the connected open subset U of Ml,
 then fb fig in U

 (ii) for each open set Uc M' there is an a C A such that f0,(D ) c U.
 Then from Theorem 11.1 we have immediately the

 COROLLARY. If Hom (Dn, Mn) has a stable dense subset, then Ml sup-
 ports a stable structure.

 THEOREM 11.2. Every orientable triangulable manifold admits a sta-
 ble structure.

 Let h be a fixed homeomorphism of Dn onto a closed n-simplex, All.
 Orient A" and triangulate and orient Mn. Let (f0)A be the set of all
 orientation preserving simplicial embeddings of An into the interior of
 any n-simplex in Ml. Then we claim that (fO,h)A is a stably dense subset
 of Hom (Dn, Mn).

 Since the embeddings are into the interiors of simplexes, it is clear
 that each fe,, and hence each foh, is locally flat. Condition (ii) above is
 immediate. To verify condition (i), note that a connected open subset of
 Ml is always n - (n -1) connected, i.e., not disconnected by removal of

 the n - 2 skeleton of Mn. Then if fz(M) and fA(An) both lie in the con-
 nected open subset U of M", f,(Mn) can be pushed from n-simplex through
 n - 1 simplex to n-simplex of U until it coincides with f3(An). Thus (i)
 is also satisfied.

 12. Stable atlases

 The set of all stable coordinate systems on the stable manifold Mn may
 be partially ordered by inclusion. Since the union of an ascending chain
 of stable coordinate systems is again a stable coordinate system, Zorn's
 lemma applies, and there must exist a maximal stable coordinate system
 which we call a stable atlas.

 If we were dealing with continuous structures instead of stable struc-
 tures, there would be only one continuous atlas for Mn, which would
 contain all local coordinate systems on Mn. A stable atlas will not, of
 course, contain as many coordinate homeomorphisms, but the following
 theorem shows that it will contain all possible coordinate neighborhoods.

 THEOREM 12.1. Let Mn be a stable manifold and (Ui, hi), a stable atlas.
 If U C Ma is an open set which can be embedded in Rn, then there is an
 open set Wc RI' and a homeomorphism h: W-e U such that (U, h) -
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 (Ui, hi) for some i e I. If U is homeomorphic to R", W can be chosen to
 be Rn.

 First suppose that U is connected, and let h': W' U be a homeo-
 morphism of an open set in Rn onto U. Let x be a point of U and y' =

 h'-'(x). Let Uj be a coordinate neighborhood of x in M", and hj: Wy Uj
 the associated coordinate homeomorphism. Let yi = hj-(x).

 According to [2] and [4], there is a homeomorphism g of Rn onto itself

 which agrees with h'-1hj in a neighborhood of yj. Let W = g1( W') and
 h = h'g/ W.

 To show that (U, h) is included in the stable atlas, note that h = hj in
 a neighborhood of yj = h-1(x). Then (U, h) is certainly stably equivalent
 to all members of the atlas at x. Since U is connected, Theorem 7.1 im-

 plies that (U, h) is stably equivalent to all members of the atlas at every
 point of U. By maximality of an atlas, (U, h) = (Ui, hi) for some i e L

 Note that if U is homeomorphic to R", choosing W' = R" insures

 W= R .

 U, if disconnected, can have at most countably many components.
 Divide RI' into countably many disjoint open compartments, and modify

 the above construction by stably shrinking W into one of the compart-

 ments. Applying the modified construction with a new compartment for
 each component of U proves the theorem.

 If (Ui, hi), is a stable atlas for Ml and h a homeomorphism of RI onto
 itself, then (U%, hih), is also a stable atlas for Mn, and coincides with the
 original one if and only if h is stable. Since Ml is connected, the tech-

 nique of the above theorem indicates that all stable atlases for Ml may
 be obtained from a single one in this manner. Hence a stable manifold
 admits as many distinct stable atlases as there are elements of
 H(Rn)/SH(Rn). This is, of course, in agreement with the fact that S(Mn)

 is homeomorphic to Mn x H(Rn)/SH(Rn) whenever M" is stable.

 THEOREM 12.2. Let U and V be connected open subsets of MB such
 that

 (i) Mn = UU V,
 (ii) u n v is connected.

 Then if U and V are stable, so is M".

 Let (Ui, hi), and (Vi, g3), be stable coordinate systems for U and V,
 respectively. Let x be a point of U n v, and as in the preceding theorem,
 choose a homeomorphism h of RI' onto itself such that (Ui, hih), and
 (Vj, gj), are stably equivalent at x. Since U n v is connected, the two
 coordinate systems will be stably equivalent at every point of Un v.
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 Then (Ut, hih), U (VVj, gj)% will be a stable coordinate system for Mn.

 13. Stable homeomorphisms of stable manifolds

 Let Ml and M"' be stable manifolds with stable coordinate systems

 (Ut, hi), and (U;, hj),, respectively. Let f: Mn Mn' be a homeomor-
 phism and x a point of Mn. Choose coordinate neighborhoods Ui and Uj'
 such that x e Ui and f (x) e UJ . Then we will say that f is stable at x if
 hM-fhi is stable at h;l(x). The definition is independent of the choice of
 local coordinate systems from the given stable coordinate systems. Since
 Mn is connected, it follows from Theorem 7.1 that, if f is stable at one

 point of Ml,, it is then stable at every point of Mn, in which case we call

 f a stable homeomorphism. SH(Mn) will denote the group of stable
 homeomorphisms of the stable manifold Mn onto itself.

 This terminology and notation has already been used in a different

 sense in ? 4. The following theorem removes any possibility of confusion.

 THEOREM 13.1. A homeomorphism h of the stable manifold MB onto
 itself is stable in the new sense if and only if it is stable in the old sense.

 In particular, the stability of h is independent of the particular stable
 structure on Mn.

 If a homeomorphism h of Ml' onto itself restricts to the identity on the

 non-empty open set U, then h is certainly stable in the new sense at

 points of U, and hence stable in the new sense on Mn. Then a product
 of such homeomorphisms must also be stable in the new sense. Thus

 stability in the old sense implies stability in the new sense.
 If h is stable in the new sense, choose x e M7 and let x' = h(x). Let U

 be an open n-cell in Mn containing both x and x', and g: Run U a homeo-
 morphism such that (U, g) is contained in the stable atlas for Mn, ac-
 cording to Theorem 12.1. Then g-1hg is stable at g-1(x). By Theorem 6.4,
 there is a homeomorphism h' e SHo(Rn) which agrees with g-1hg in a

 neighborhood of g-1(x). Then gh'g-1 is a homeomorphism of U onto itself

 which agrees with h in a neighborhood of x, and which restricts to the
 identity near the boundary of U. Extend gh'g-1 over Mn via the identity

 to obtain a homeomorphism h1 of Ml.

 Since h1 agrees with h in a neighborhood of x, h2 = hhT' restricts to the
 identity in a neighborhood of x. Then writing

 h = h2h1

 expresses h as the product of two homeomorphisms, each of which is

 somewhere the identity. Hence stability in the new sense implies sta-
 bility in the old sense.
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 14. The structure of Homr8 (Dn, Mn) and SH(Mn)

 for stable manifolds

 The following theorem shows that the results of ?? 3 and 6 can be im-

 proved to full generalizations of the theorems in [1] if and only if M?

 supports a stable structure.

 THEOREM 14.1. Let MB be a connected topological manifold. Then the

 following are equivalent:

 (i) Mn is stable.

 (ii) If h is a stable homeomorphism of Mn and E1 and E2 are closed

 n-cells with locally flat boundaries in Mn such that E1 U hE1 c E2, then

 there is a stable homeomorphism h' of Mn which agrees with h on E1 and

 whose restriction to Mn - E2 is the identity.

 (iii) If f and f ' are annularly equivalent elements of Hom (D , Mn)
 such that f (Dn) c Int f '(Dn), then f f'.

 (iv) If U is a connected open subset of Mn, then i*: Homrn (Dn, U)

 Homrn (Dn, Mn) is one-one and onto.
 Proof that (i) implies (ii). Let U = Int E2 and let g: Rn , U be a

 coordinate homeomorphism chosen so that (U, g) is contained in the stable
 atlas for Mn, according to Theorem 12.1. Since h is stable, it follows

 from [2] and [4] that g-1hg/g-1(El) extends to a stable homeomorphism h*
 of Rn onto itself. According to [1, Th. 7.1], h* can be chosen to lie in

 SH,(Rn). Then gh*g-1: U-p U restricts to the identity near the boundary
 of U, and h' may be defined to be gh*g-1 on Uand the identity on Mn - U.

 Proof that (ii) implies (iii). According to Theorem 5.4, there is a stable

 homeomorphism h of Mn such that hf= f'. Let E1 = f(DI) and let E2

 be a closed n-cell with locally flat boundary containing hE1 = f'(Dn) in
 its interior. There is, by (ii), a homeomorphism h' of Mn which agrees

 with h on E1 and restricts to the identity on Mn - E2 Thus f and f' are
 stably equivalent, and hence annularly equivalent, in Int E2. Then

 fzf ' by [1, Th. 3.5 (i)].

 Proof that (iii) implies (iv). By Lemma 3.1, i* is onto. Let
 f, f ' e Hom (DI, U) be annularly equivalent in Mn. Using Lemma 3.1,

 we can assume that f (D) c Int f '(D). Then f Af' by (iii), so f and f'
 are annularly equivalent in U and i* is one-one.

 Proof that (iv) implies (i). Let f be a fixed element of Hom (Dn, Mn),

 and (fA*)A the collection of all elements of Hom (Dr, Mn) which are stably
 equivalent tof. By Lemma 3.1 and (iv), (f*)A is stably dense in My. Then
 Mn supports a stable structure by the Corollary to Theorem 11.1.
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 (III)

 15. Stable transportation of local coordinate systems

 In this section we describe a procedure for recognizing whether or not

 a closed curve in Mn represents an element of the stability subgroup

 Sw1(M").

 Let a be a path in M" from a to b, and

 a = ao, al .*** , ak-b

 a partition of a. For each i -1, * **, k, let (Ui, hi) be a local coordinate
 system in M" such that

 (i) the sub-path of a from ai-1 to ai lies in Ui,
 (ii) h-41hi is stable at hT1(ai) for i = 1, ***, - 1.

 Then we will say that the local coordinate system at b, (b, Uk, hk), is
 obtained from the local coordinate system at a, (a, U1, h1), by stable

 transportation along the path a.

 LEMMA 15.1. Let the local coordinate systems at a, (a, U1, hj) and
 (a, UW, hi), be stably equivalent, and let the local coordinate systems at b,

 (b, Uj, hj) and (b, Uk, hk), be obtained from those at a by stable transpor-
 tation along the path a. Then (b, Uj, hj) and (b, Uk, h') are stably
 equivalent.

 By taking a common refinement of the two partitions of a, we may as-
 sume that the same partition is used for both transportations.

 If (Ui, hi) and (UI', h') are stably equivalent at ai-1, they are stably
 equivalent at every point of the component of Ui nf U containing ai_1.
 Since both Ui and UI' contain the sub-path of a from ai-1 to ai, (Ui, hi)
 and (UI', h') are also stably equivalent at ai. But (Ui+1, hi+1) is stably

 equivalent to (Ui, hi) at ai, and (UK',1, h!+1) is stably equivalent to (Us', h')
 at ai. Thus (UK',1, h'+1) is stably equivalent to (Ui+1, hi+1) at ai, and the
 lemma is then proved inductively.

 It is clear that a given local coordinate system can be stably trans-

 ported along a given path which begins within its range. Then the above

 lemma implies that, if [x, U, h] is an element of S(M") and a a path in
 Ml' from x to x', there is a unique element [x', U', h'] of S(Mn) obtained

 from [x, U, h] by stable transportation along a. Since S (Mn) is a covering

 space over Ml, this element is the same as that obtained by covering a

 by a path in S(Mn) beginning at [x, U, h].
 We therefore have

 THEOREM 15.2. Let a be a closed curve in MB. Then a represents an
 element of the stability subgroup Sw1(Mn) if and only if stable trans-
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 portation of any local coordinate system around a produces a stably
 equivalent local coordinate system. Furthermore, since S(Mn) is a regu-

 lar covering space over Mn, if a single local coordinate system trans-

 ports around a to a stably equivalent one, then so do all local coordinate
 systems.

 Now let

 goAfgA A fk1 A f

 be a chain of strict annular equivalences. For each i = 1, *.., k, let ac

 be a path in fi-1 (Int Dn) U fi (Int Dn) which runs from fi-1(O) to fi(O).
 Then the path

 a = a1 U a2 U ... U ak

 which runs from fg(O) to fk(O), will be called a trace of the given chain of
 strict annular equivalences.

 THEOREM 15.3. Let fo be an arbitrary element of Hom (Dn, MB) and a
 a closed curve in Mn running through fo(O). Then a is a trace of a chain
 of strict annular equivalences beginning and ending with fo if and only
 if a represents an element of the stability subgroup Swl(Mn).

 Let fo A f1 A * * fk-l Afo be a chain of strict annular equivalences with
 trace a. As in the proof of Theorem 3.4, we may assume that

 fo(Dn) Df1(Dn) C ... D fk-1(Dn) cfo(Dn).

 Then we claim that the local coordinate systems

 (fo(Int Dn)y fo), (f2(Int Dn), f2). .. * * (fk-2(Int Dn), fk-2)

 provide a stable transportation of (f0(Int Dn), fo) around a to itself.
 Note first that a2i U a2i+1 c f2i(Int Dn). Since f2i -f2i+?, filjf2j is

 stable at f2y1f2j+,(0). Since f2i+1 Af2i+2, f2-+2f2i+1 is stable at f2 1 (0).
 By composition, flj+2f2i is stable at ft1 f2j+?(0). Since f2j+1(0) lies in
 f2i(Int Dn) n f2i+2(Int Dn), the claim is verified and a, according to Theo-
 rem 15.2, must represent an element of S1(Mn).

 Now suppose that a represents an element of Sr1 (Mn). Let

 f0 -f1 A * * *fk-, be a chain of strict annular equivalences with trace
 a, chosen so that fk-l(Dn) c Intfo(Dn). By associating with this chain
 a stable transportation of local coordinate systems around a, as in the
 nrst part of the proof, we can conclude that fo-1fk is stable at fkil(O).
 If U is any open n-cell containing fo(Dn), it follows that fk-l and fo are
 stably, and hence annularly, equivalent in U. But then fk-l Afg by
 [1, Th. 3.5 (i)], and the theorem is proved.
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 16. Covering spaces

 Let Mn be a covering space over Mn with covering map

 q: MI Mn

 We are interested in the relation between p: S(Mn) Mn and P: S(Mn)->
 M .n

 Suppose [x, U, h] is a point of S(Mn). Let V c U be a small neighbor-
 hood of x which projects homeomorphically under q. Let #= h/h= V.
 Then [x, V, g] = [x, U, h]. Let x = q(X), V= q(V) and g = q#. Define
 a map

 q: S(kn) >S(Mn)
 by

 q([Xj VIg)[XI VIg].

 If [x, V, I] = [x', V', g'], then x = x' and g'# must be stable at g-'(X).
 Then x = q(X) = q(X)= x' and g'-1g = g'-lq-lq# = g'-'# in a neighborhood
 of g-1(x) = g-N() so 4([X V, ']) = [x, V, g] = [x', V', g',] = W([V', V', I']).
 Hence q is well-defined.

 Since small local coordinate systems in Mn can be lifted to local coordi-
 nate systems in Mn, it is easily seen that q is a covering map, and that
 the following diagram is commutative.

 S (Mt) (7S(Mn)

 -1 1~~P
 Mn > Man

 q

 Let mO be a basepoint in Mn, and im% a covering basepoint in Mn. The
 following theorem asserts that S(Mn) is minimally determined by the
 above diagram.

 THEOREM 16.1. qS1:r(Mn, rn-O) = q*171(Mn, AO) n Swl1(Mn, MO).
 It follows from the diagram that the left hand side must be contained

 in the right hand side.
 Suppose then that a is a closed curve in Mn based at mO and represent-

 ing an element from the right hand side. Then a is covered by a closed
 curve a in Mn based at iO. Since a represents an element of Sw1J(Mn, MO),
 it follows from Theorem 15.2 that stable transportation of any local
 coordinate system around a produces a stably equivalent coordinate sys-
 tem. If the coordinate neighborhoods are small enough, the whole stable
 transportation can be lifted to Mn. Then again by Theorem 15.2, a must

This content downloaded from 81.140.33.209 on Thu, 29 Mar 2018 16:58:03 UTC
All use subject to http://about.jstor.org/terms



 40 BROWN AND GLUCK

 represent an element of Sw1(Mn, imh,,), so the right hand side is contained
 in the left hand side and the theorem is proved.

 COROLLARY 1. Any covering space of a stable manifold is stable.

 COROLLARY 2. There is a unique minimal stable covering space of
 any given manifold. It corresponds to the stability subgroup and is

 equivalent to a component of the sheaf of germs of stable structures on

 the manifold. Hence for any manifold, the sheaf of germs of stable

 structures is stable.

 17. Covering transformations

 This section is motivated by the following

 QUESTION. If the covering space MB of MB is stable, what additional

 information is needed to deduce the stability of MI?

 Intuitively, one is led to consider the covering transformations of Mt.

 If these are all stable, it would seem that Ml has a good chance of being

 stable. However, if the covering is not regular, then the covering trans-

 formations are not transitive on fibres, and we are deprived of some infor-
 mation. The following details take this into account.

 Let G = q*w1(Mn, An). Then the points of the fibre q-1(m,) are in one-
 one correspondence with the right cosets of G in 71r(M, mo), with A,
 corresponding to G itself. Let a,, denote that point of q-1(mo) which cor-
 responds to the coset Ga. Then imat= ,, if and only if a,8-1 e G.

 Let fA be an element of Hom (D , Ml) such that
 (i) f(O)= m0,
 (ii) q/fo(Dn) is a homeomorphism into.

 Then fJib will denote the corresponding element of Hom (D", M") such that
 (i) fT=(O) =e,
 (i i) qfv = qfo.

 THEOREM 17.1. fo0fc. if and only if Ga meets Sw1(Mn, mo).
 If fo >f,, then there is a chain of strict annular equivalences connect-

 ing fo and fib with trace A?, which runs from im to i^. Let f = qfo = q7f ^.
 The chain can be chosen with elements small enough so that the whole

 chain projects down under q to a chain of strict annular equivalences con-

 necting f with itself, and having tracef = qua. Since S runs from ino to
 ma*, 8 must lie in Ga. But by Theorem 15.3, ,8 must also lie in Sw1,(Mn, mo).

 Suppose, on the other hand, that Ga meets Sw1r(Mn, mo). Without loss
 of generality, let a e Sw1,(Mn, mo). By Theorem 15.3, there is chain of
 strict annular equivalences in Ml connecting f with itself and having
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 trace a. Lifting this chain to Mn gives a chain of strict annular equiva-

 lences connecting f0 with ft. Hence f08far

 COROLLARY 1. If z is a covering transformation of MB taking MO onto
 ma_, then z is stable if and only if Ga meets Sw1(Mn, mO).

 For z is stable if and only if fo is stably equivalent to zf- = ft.

 COROLLARY 2. If MB is a covering space of the stable manifold MB,

 then every covering transformation is stable.

 COROLLARY 3. All covering transformations, other than the identity,

 of a single component of S(M1) are unstable.

 THEOREM 17.2. Let Ml be a regular covering space of MB. Then M"
 is stable if and only if Ml is stable and all the covering transforma-

 tions are stable.

 If Ml is stable, then Mn is stable by Corollary 1 to Theorem 16.1, and
 all covering transformations are stable by Corollary 2 to Theorem 17.1.

 On the other hand, if M7 is stable then q*w1(Mn, im) = Gc Sw1(Ml, i0).

 Since the covering is regular, the covering transformations are transitive
 on fibres. Therefore, by Corollary 1 to Theorem 17.1, every coset of G in

 w71(Mn, MO) must meet Sw1r(MA, nO). Hence w1r(MA, mO) = Sw1r(Mn, mo), and
 Ml, is stable.

 THEOREM 17.3. The connected topological manifold MB is stable if

 and only if each covering transformation of the universal covering

 space of Ml can be written as a product of homeomorphisms, each of
 which is somewhere the identity.

 (IV)

 18. Manifolds which admit no stable structure

 As remarked at the end of ? 10, a stable manifold is automatically

 orientable. If the annulus conjecture is correct, then it follows from

 [1, Th. 9.4] that the pseudogroup SP(R1) of stable coordinate transfor-

 mations in R" coincides with the pseudogroup of all orientation pre-

 serving coordinate transformations, in which case every orientable mani-
 fold is stable. Hence short of a negative solution to the annulus conjec-

 ture, we can not exhibit an orientable manifold which admits no stable
 structure.

 Suppose, therefore, that the annulus conjecture is false, i.e., that

 there is a compact region A in RI' bounded by two locally flat n - 1

 spheres S1 and S2, which is not homeomorphic to SI` x [0, 1]. Orienting
 RI' induces orientations of S1 and S2 by looking at their bounded comple-
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 mentary domains. Let f be any orientation preserving homeomorphism
 from S1 to S2. Identifying x e S1 with f (x) E S2, we obtain from A a

 decomposition space Mn which is a closed orientable n-manifold.

 LEMMA 18.1. The universal covering space MO of Ml is homeomorphic
 to Rn _ 0.

 Extend f to an orientation preserving homeomorphism F of Rn onto

 itself. Then the union of the images of A under the various positive and

 negative powers of F is a copy of Mn. Since this copy lies in R n, use
 [1, Th. 6.1] to place a family of stably equivalent locally flat n - 1 spheres
 between FkS, and FkS2 for each integral value of k. Then Mn is homeo-
 morphic to a doubly infinite chain of spaces, each of which is homeo-
 morphic to Sn-1 x [0, 1] by Lemma 9.1 of [1]. Such a space is clearly
 homeomorphic to Sn-1 x R1, which is homeomorphic to Rn _ 0.

 THEOREM 18.2. Mn does not admit a stable structure.

 Let Mn = Rn 0 0 and let F be a generator of the infinite cyclic group
 of covering transformations. If Mn is stable, then F must be stable by
 Corollary 2 to Theorem 17.1. Hence Fextends to a stable homeomorphism-
 of Sn onto itself by Theorem 6.5. But then by [1, Th. 3.5 (i)], A must be
 homeomorphic to Sn-1 x [0, 1], contrary to assumption. Hence Mn can
 not be stable.

 Thus if the annulus conjecture is false in dimension n, there is a closed
 orientable n-manifold which admits no stable structure. By Theorem
 10.4, this manifold can admit neither a differentiable nor a piecewise
 linear structure. By Theorem 11.2, this manifold can not be triangulated.

 It is shown in [6] that if A is a counter-example to the annulus con-
 jecture, then A can not be triangulated.

 19. The homogeneity problem

 If M1 and M2 are homeomorphic stable manifolds, does there exist a
 stable homeomorphism from M1 onto M2? Equivalently, is the stable

 structure on a stable manifold unique up to stable homeomorphism?
 As the question is phrased, the answer is no, for a stable structure is

 an oriented structure, and there exist stable manifolds which do not
 admit orientation reversing homeomorphisms.

 Therefore let the stable structures on M1 and M2 induce orientations,
 and assume the existence of an orientation preserving homeomorphism
 from M1 onto M2. Then, does there exist a stable homeomorphism from
 M1 onto M2? Equivalently, are stable structures unique up to orientation?

 It is the object of this section to show that the problem of uniqueness
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 of stable structures coincides with the well known homogeneity problem.

 Recall that a connected n-dimensional topological manifold Mn is said

 to be homogeneous if, for any two locally flat embeddings f1, f2 of Dn into
 Mn, there is a homeomorphism h of Mn onto itself such that hf, = f2. If
 Mn is orientable and h exists provided f1 and f2 induce the same orienta-

 tion on Mn from a given orientation on Dn, then we say that Mn is
 homogeneous up to orientation.

 In other words, homogeneity of Mn means that H(Mn) acts transitively

 on Hom (Dn, Mn). Note that H(Mn) acts transitively on Hom (Dn, Mn)
 if and only if H(Mn)/SH(Mn) acts transitively on Hom8 (Dn, M").

 Orientable manifolds which admit no orientation reversing homeo-
 morphism cannot be homogeneous, but it is a classical conjecture that all

 connected manifolds are homogeneous up to orientation. This conjecture
 has been proved in the differentiable case by Palais [7] and in the piece-

 wise linear case by Newman [8] and Gugenheim [9].

 THEOREM 19.1. Let MB be a connected stable manifold. Then the

 stable structure on Mn is unique (unique up to orientation) if and only
 if Mn is homogeneous (homogeneous up to orientation).

 Assume first that Mn is homogeneous, and let M1 and M2 be two stable

 manifolds with underlying space Mn. Let h1: Rn , U be chosen so that
 (U, h1) is included in the stable atlas for M1, according to Theorem 12.1.
 Similarly, choose h2: Rn - U so that (U, h2) is included in the stable atlas
 for M2. Let fi = hi/Dn for i = 1, 2. Since Mn is homogeneous, there is
 a homeomorphism h of Mn onto itself such that hf, = f2. Then h, viewed
 as a homeomorphism from M1 to M2, is certainly stable at points of

 f1 (Int Dn). Since Mn is connected, h is stable, and the stable structure
 on Mn is unique. Similarly, if Mn is homogeneous up to orientation, then
 the stable structure on Mn will be unique up to orientation.

 Assume now that the stable structure on Mn is unique. Let f1 and f2

 be elements of Hom (Dr, Mn), and extend f to a homeomorphism hi: Rn -
 Ui c Mn for i = 1, 2. Since Ui is connected, the local coordinate systems
 (U1, h1) and (U2, h2) extend to stable atlases, which define stable mani-
 folds M1 and M2 on Mn. By assumption, let g be a stable homeomorphism
 of M1 onto M2. To prove that Mn is homogeneous, we will construct a

 homeomorphism h of M2 onto itself such that hgf, = f2.
 By Lemma 3.1, we can assume that gf1(Dn) c U2. Since g is stable,

 h-1gh, must be stable on Int Dn. Let h' e SH,(Rn) agree with h-1gh1 on
 Dn. Then h2h'h21 is a homeomorphism of U2 onto itself which restricts
 to the identity near the boundary of U2.

 Let h be the homeomorphism of M2 onto itself which agrees with
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 h~h'-'h2- on U2 and the identity on M,- U2. Then on Do,

 hgf1 = h2h'-1h-lgh, = h2hT1g-1h2h-1ghj = h2 = A 1
 so M" is homogeneous. Similarly, if the stable structure on Man is unique

 up to orientation, then Ml is homogeneous up to orientation.
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